Gaussian groups and Garside groups, two generalisations of Artin groups
نویسندگان
چکیده
It is known that a number of algebraic properties of the braid groups extend to arbitrary finite Coxeter type Artin groups. Here we show how to extend the results to more general groups that we call Garside groups. Define a Gaussian monoid to be a finitely generated cancellative monoid where the expressions of a given element have bounded lengths, and where left and right lower common multiples exist. A Garside monoid is a Gaussian monoid in which the left and right l.c.m.’s satisfy an additional symmetry condition. A Gaussian group and a Garside group are respectively the group of fractions of a Gaussian monoid and of a Garside monoid. Braid groups and, more generally, finite Coxeter type Artin groups are Garside groups. We determine algorithmic criterions in terms of presentations for recognizing Gaussian and Garside monoids and groups, and exhibit infinite families of such groups. We describe simple algorithms that solve the word problem in a Gaussian group, show that theses algorithms have a quadratic complexity if the group is a Garside group, and prove that Garside groups have quadratic isoperimetric inequalities. We construct normal forms for Gaussian groups, and prove that, in the case of a Garside group, the language of normal forms is regular, symmetric, and geodesic, has the 5-fellow traveller property, and has the uniqueness property. This shows in particular that Garside groups are geodesically fully biautomatic. Finally, we consider an automorphism of a finite Coxeter type Artin group derived from an automorphism of its defining Coxeter graph, and prove that the subgroup of elements fixed by this automorphism is also a finite Coxeter type Artin group that can be explicitely determined. Mathematics Subject Classification. Primary 20F05, 20F36. Secondary 20B40, 20M05
منابع مشابه
Parabolic subgroups of Garside groups
A Garside monoid is a cancellative monoid with a finite lattice generating set; a Garside group is the group of fractions of a Garside monoid. The family of Garside groups contains the Artin-Tits groups of spherical type. We generalise the well-known notion of a parabolic subgroup of an Artin-Tits group into that of a parabolic subgroup of a Garside group. We also define the more general notion...
متن کاملA Dual Braid Monoid for the Free Group
We construct a quasi-Garside monoid structure for the free group. This monoid should be thought of as a dual braid monoid for the free group, generalising the constructions by Birman-Ko-Lee and by the author of new Garside monoids for Artin groups of spherical type. Conjecturally, an analog construction should be available for arbitrary Artin groups and for braid groups of well-generated comple...
متن کاملParabolic Subgroups of Garside Groups Ii : Ribbons
We introduce and investigate the ribbon groupoid associated with a Garside group. Under a technical hypothesis, we prove that this category is a Garside groupoid. We decompose this groupoid into a semi-direct product of two of its parabolic subgroupoids and provide a groupoid presentation. In order to established the latter result, we describe quasi-centralizers in Garside groups. All results h...
متن کاملConjugacy problem for braid groups and Garside groups
We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee [3]. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).
متن کاملPalindromes and Orderings in Artin Groups
The braid group Bn, endowed with Artin’s presentation, admits two distinguished involutions. One is the anti-automorphism rev : Bn → Bn, v 7→ v̄, defined by reading braids in the reverse order (from right to left instead of left to right). Another one is the conjugation τ : x 7→ ∆x∆ by the generalized half-twist (Garside element). More generally, the involution rev is defined for all Artin group...
متن کامل